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eutron cross sections on unstable nucle1 are difficult, 1f not impossible to measure directly. Indirect methods, such as the absolute surrogate
method, may therefore be used to determine neutron cross-sections using charged particle reactions on stable nuclei. By measuring exit

channel probabilities on equivalent compound nucle1, combined with calculated neutron-induced compound nucleus formation cross sections
from optical models, (n,xny) cross sections can be determined. This study 1s the first attempt using STARS-Li1BerACE at LBNL’s 88-inch

Cyclotron to test the absolute surrogate method using gamma rays to determine (n,y) and (n,2n) cross sections.
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« Beam: “He from the 88 Cyclotron

(42 MeV, >4 days)

e Target: °'Gd (99.2%, ~1.1 mg/cm?2)

* Reactions: °’Gd(°He,’He’), (*He, o)
as surrogates for '°>-1°°Gd(n,x)

O (E) =Y oV (E.J.m) GV (E.J.m)

S “Desired” Reaction
o, CN: formation cross sections calculated using optical models
GXCN; branching ratios are very difficult to calculate and @ @
results are strongly model-dependent e

Py (E) = Y FN(E.J.70) G (E.J, )

F,CN: theoretically determined direct reaction probabilities

GXCN: these are the same branching ratios for the
“desired” reaction above

Surrogate Reaction
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(140 pm) ¢ Wh ?
3He-beam y @
E detector / Originally meant to be half of a future two-part surrogate
(1000 ym) ratio exp eriment to determine the 153Gd(n,y) Cross section. If branching ratios are J* independent: O— — O-CN P
e However, because gadolinium has well-studied neutron e ox o "o
shield Detectors. cross section due to its use in control rods, it is a good
candidate for testing the absolute surrogate method.
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analyzed as a function of Gd excitation | £ °Gd
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(divided by the total number of alphas) to the intensity of the same transition immediately 3 | =
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@ Exit Channel Detection Efficiency gamma emission is zero). e >3
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p (E )= N ay(E o) FRRRRRERR exit channels are shown below. Exit channel probabilities 0)p
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ay” ' a ex . . .
cross sections (from optical models) to obtain °°Gd(n,y) and 5.
o " cr (from op ) (n.7) Example Gamma Intensities
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For 157Gd(3He,a)156G(h\
199 keV (4*—2%): ¢, = 0.49 %
297 keV (6*—>4*): ¢, = 0.30%
380 keV (8*—6*): ¢,.= 0.09%
SUM: ¢, = 0.88%
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Gamma Exit Channel Probability

* Based on 199keV line

e X-error bars reflect bin widths only

Conclusions

At present, we have not been able to reproduce the known neutron cross sections of
ENDF evaluations or STAPRE calculations. While the general low-energy shape of
the exit channel probability 1s correct, the absolute magnitude 1s high by a significant

factor. Furthermore, we observed a low, but significant gamma-only emission intensity
at high excitation energies, where the (n,y) cross section should drop to zero. Results

for the (n,2n) cross section are similar, but are also affected

oxygen target contamination for which we have yet to compensate.

by significant carbon and

It 1s unclear 1f these results reflect a failure of the absolute surrogate method, non-ideal

o

Neutron Energy (MeV)

experimental conditions, or reactions from target impurities. We are continuing to
scrutinize the results to 1dentify the cause of the discrepancies.
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